Planar multi-patch domain parameterization via patch adjacency graphs

نویسندگان

  • Florian Buchegger
  • Bert Jüttler
چکیده

As a remarkable difference to the existing CAD technology, where shapes are represented by their boundaries, FEM-based isogeometric analysis typically needs a parameterization of the interior of the domain. Due to the strong influence on the accuracy of the analysis, methods for constructing a good parameterization are fundamentally important. The flexibility of single patch representations is often insufficient, especially when more complex geometric shapes have to be represented. Using a multi-patch structure may help to overcome this challenge. In this paper we present a systematic method for exploring the different possible parameterizations of a planar domain by collections of quadrilateral patches. Given a domain, which is represented by a certain number of boundary curves, our aim is to find the optimal multi-patch parameterization with respect to an objective function that captures the parameterization quality. The optimization considers both the location of the control points and the layout of the multi-patch structure. The latter information is captured by pre-computed catalogs of all available multi-patch topologies. Several numerical examples demonstrate the performance of the method.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Constructing IGA-suitable planar parameterization from complex CAD boundary by domain partition and global/local optimization

In this paper, we propose a general framework for constructing IGA-suitable planar B-spline parameterizations from given complex CAD boundaries consisting of a set of B-spline curves. Instead of forming the computational domain by a simple boundary, planar domains with high genus and more complex boundary curves are considered. Firstly, some pre-processing operations including Bézier extraction...

متن کامل

Construction of analysis-suitable G1 planar multi-patch parameterizations

Isogeometric analysis allows to define shape functions of global C continuity (or of higher continuity) over multi-patch geometries. The construction of such C-smooth isogeometric functions is a non-trivial task and requires particular multi-patch parameterizations, so-called analysis-suitable G (in short, AS-G) parameterizations, to ensure that the resulting C isogeometric spaces possess optim...

متن کامل

Isogeometric design and analysis

Isogeometric analysis (IGA) aims to bridge the geometric divide between CAD systems and FEA software tools. It is founded on the idea of using the same basis functions to represent the CAD geometry and to approximate the physical quantities appearing in analysis. It promises to revolutionize the design and analysis processes for automobile, aerospace and marine industry by eliminating the need ...

متن کامل

Sparse Patch-Based Label Fusion for Multi-Atlas Segmentation

Patch-based label fusion methods have shown great potential in multi-atlas segmentation. It is crucial for patch-based labeling methods to determine appropriate graphs and corresponding weights to better link patches in the input image with those in atlas images. Currently, two independent steps are performed, i.e., first constructing graphs based on the fixed image neighborhood and then comput...

متن کامل

Determination of Resonance Frequency of Dominant and Higher Order Modes in Thin and Thick Circular Microstrip Patch Antennas with Superstrate by MWM (RESEARCH NOTE)

An accurate model named as the Modified Wolff Model (MWM) is presented as an efficient CAD tool for determination of resonant frequency of the dominant and higher order modes under the multi-layer condition in thin and thick circular microstrip patch antennas. The effects of dielectric cover on the resonant frequency obtained from MWM have been compared against the result of theoretical method ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Computer-Aided Design

دوره 82  شماره 

صفحات  -

تاریخ انتشار 2017